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A little bit about my work

First Author
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What are Sustainable Systems?

Supply Chain

Energy Efficiency

Renewable Energy

End-of-Life

Devices and systems with 
low embodied footprint.

Recycling and responsible 
disposal of electronic waste.

Optimizing hardware and 
software to consume less power.

Utilizing green (low-carbon) 
energy sources. 
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Carbon Emissions of Data Centers

ICT is responsible for 1.5 - 4%
of Global Carbon Emissions, 
may reach 6-14% by 2040.

Worldbank. Green Digital Transformation. 2024

AI is poised to drive 160% increase 
in data center power demand. 



Carbon Emissions of Data Centers
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Carbon Emissions of Data Centers
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Carbon Emissions of Data Centers

10%
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TPU Emissions Data Centers Battery-Operated Devices

Embodied Emissions Operational Emissions
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Optimizing Carbon Emissions of Data Centers

Operational 
Emissions

Embodied 
Emissions

• The relationship between design and embodied emissions

• Optimize Design and Manufacturing
• ACT [ISCA’22], Focal [ASPLOS’24]

• Extending Lifetime 
• Junkyard Computing [ASPLOS’23]

↑ 𝑪𝒂𝒓𝒃𝒐𝒏 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =
↑ Energy Ef6iciency (𝐶𝑦𝑐𝑙𝑒𝑠/𝑘𝑊ℎ)
↓ Carbon Intensity (𝑔. 𝐶𝑂!𝑒𝑞)

• Energy Efficiency = Algorithmic Efficiency (Less Cycles) + Power 
Efficiency (Cycles /Watt)

• Carbon Intensity = Renewable Sources and Carbon-aware Scheduling
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Carbon Footprint = 
Cycles per Unit Work x Total Units of Work

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

[bounded]

Algorithmic Efficiency can be 
further improved, but has limits

Industry has strong incentive to 
improve  the algorithmic efficiency

Recent focus on ML training 
and Crypto-mining

[bounded]

[Koomey’s Law: Energy efficiency 
doubles every 1.5-2.6 years] 

transition to cloud, dedicated hardware

[Laundar’s Principle: Theoretical limit 
to be reached in 2050, practical sooner]

[Jevon’s Paradox: Historically, gains in 
efficiency have not reduced demand]

[unbounded]

Datacenter capacity increased 
by 6X from 2010-2018

Crypto-mining and ML demand is 
outpacing Moore’s law 

Industry has strong incentive to 
maintain and accelerate growth

[unbounded]

Zero-carbon energy means carbon 
efficiency can be infinite

Industry has helped subsidize 
zero-carbon energy

 X



• Data centers host 1000s of CPUs and GPUs 
that consume lots of energy. 
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Optimizing Energy Efficiency

• Cooling: Avoid hardware failure and 
improve server performance.

• Cooling Innovations: 
– Raise Floors – Open Air Cooling – Liquid Cooling

Servers (CPUs/GPUs) Cooling

Better H/W (Gains in Energy Efficiency)1

Power and Resource Management (20+ Years of research)

1 https://top500.org/lists/green500/

PUE enhancement at Google2

(Total Energy/ Compute Energy)

2 https://www.google.com/about/datacenters/efficiency/
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• Replace fossil fuels with 
renewable sources.

• Adding Renewable is cost and 
carbon-efficient.

• Carbon Intensity is 
continuously decreasing. 
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Optimizing Carbon Intensity: Renewables
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Optimizing Carbon Efficiency: Load Shifting

• Renewables are highly intermittent.
– Solar is available in the daytime.
– Solar affected by weather

Solution: Load Shifting 
(Demand-Response)
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Energy’s Carbon Intensity (g.CO2/kWh)
Energy Demand and Supply mix 

change over time.
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Energy’s Carbon Intensity (g.CO2/kWh)

0 
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src: electricitymaps.com
Temporal and Spatial variability underscores the need for carbon-aware resource management.

Energy Demand and Supply mix 
changes across space.
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• Carbon Intensity varies temporally by 2×.
• Carbon Intensity differs by ~600 g.CO2/kWh.

Energy’s Carbon Intensity (g.CO2/kWh)
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• Carbon Intensity varies temporally by 2×.
• Carbon Intensity differs by ~600 g.CO2/kWh.
• Electricity grids can be ranked using carbon intensity and variation.

Energy’s Carbon Intensity (g.CO2/kWh)
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Carbon-aware Resource Management

Temporal Shifting Resource Scaling Rate Scaling Spatial Shifting

Computing is equipped with flexibility mechanisms.



How to leverage the carbon 
intensity variation and 
computing flexibility?

Carbon-aware Computing
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Implementing Carbon-aware Resource Management

Visibility Control Incentives

Reliability 
Abstraction
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Grid’s Underlying Reality



• Match the availability of low-carbon energy with computing demand.
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Carbon-aware Temporal Shifting
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• Match the availability of low-carbon energy with computing demand.
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Carbon-aware Temporal Shifting
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• Match the availability of low-carbon energy with computing demand.
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Carbon-aware Temporal Shifting
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• Batch Workload: 1hr – 24hrs

• California Carbon Intensity

• Power Consumption (0.2 kWh)

• Suspend Resume (Let’s Wait Awhile, Wiesner et al.)

Carbon-aware Temporal Shifting
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Temporal shifting depends on flexibility in completion time but introduces 
diminishing returns. 
Longer jobs have lower relative savings but higher absolute savings.

Diminishing Return
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Temporal Shifting and Resource Scaling
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Temporal Shifting and Resource Scaling

CarbonScaler
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Temporal Shifting and Resource Scaling
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Temporal Shifting and Resource Scaling
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CarbonScaler Algorithm 

[1] Federgruen et. al.1986. The Greedy Procedure for Resource Allocation Problems: Necessary and Sufficient Conditions for Optimality. Operational Research.
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Marginal Capacity

Carbon Intensity

Marginal Resource allocation, 
where greedy algorithms are optimal [1].
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• Ontario carbon intensity. • 24hr jobs – No slack. 
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Impact of Workload Elasticity
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Spatial Shifting



– A carbon- and cost-aware load-shifting framework.
– Capacity Shifting Approach.
– Integrating Solar Energy
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CDN-Shifter (Murillo et al.)

USA Europe

Higher latency leads to higher savings but with diminishing returns.



No Free Lunch… Only Trade-offs!
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Trade-offs of Carbon-aware resource management

Carbon-aware resource management brings many trade-offs.

Close vs. Far
Now vs. Later

Performance Energy



• Elastic Scaling is not free.
• Running at a higher scale is less energy-efficient.
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Carbon-Energy Trade-offs
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Carbon-Energy Trade-offs

• Elastic Scaling is not free.
• Running at a higher scale is less energy-efficient.

Linear

Sublinear

Scaling increases carbon efficiency, and the decrease in energy efficiency depends on 
workload’s elasticity.



• DNN placement on heterogeneous edge resources1.
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Performance-Energy-Carbon Trade-offs
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1Wu et. al. CarbonEdge
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Carbon footprint of 
Computing is rising

No Free Lunch

Summary

Lifecycle Emissions
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